

reviewer1@nptel.iitm.ac.in ▼

Courses » Industrial Instrumentation

Announcements

Course

Forum

Progress

Mentor

Unit 2 - Week 1

Course outline How to access the portal Week 1 Lecture 1: Introduciton Lecture 2: Dvnamic Characteristics Lecture 3: Dynamic Characteristics (Contd.) Quiz: Week-1 Assignment on Static and Dynamic Characteristics O Week 1: Assignment Solution Feedback for Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12

Week-1 Assignment on Static and Dynamic Characteristics

1) 1 point

A temperature sensor can measure in the range 0 to 400 °C. Worst-case deviation from the best-fit straight line is found to be 5 °C. Find out the maximum non-linearity as a percentage of full-scale.

- 1) 1.0
- 2) 1.25
- 3) 1.5
- 4) None of these

Accepted Answers:

2) 1.25

2) 2 points
Find out the maximum hysteresis as a percentage of full-scale deflection (f.s.d) from the

following readings of a pressure sensor.

True	0	20	40	60	80	100	80	60	40	20	0
pressure (psi)											
Gauge	0	18	35	55	77	98	82	59	43	22	0
pressure (psi)											

- 1)5%
- 2)6%
- 3)7%
- **4)8%**

Accepted Answers:

4) 8 %

2 points

Assume, thermoelectric voltage versus temperature relationship of a thermocouple is given by, $e(t)=a_1\times t + a_2\times t^2 + a_3\times t^3$. With the reference junction at 0°C, thermo-emf at 100°C is 33 μ V, thermo-emf at 500°C is 1.24 mV and thermo-emf at 1000°C is 4.83 mV. Find a_1 , a_2 , a_3 .

- 2) $a_1 = 0.245 \,\mu\text{V/°C}$; $a_2 = 0.005825 \,\mu\text{V/°C}$; $a_3 = -7.5 \times 10^{-7} \,\mu\text{V/°C}$
- 3) $a_1 = 0.245 \,\mu\text{V/°C}$; $a_2 = +0.005825 \,\mu\text{V/°C}$; $a_3 = 7.5 \times 10^{-7} \,\mu\text{V/°C}$
- 4) $a_1 = -0.245 \,\mu\text{V/°C}$; $a_2 = -0.005825 \,\mu\text{V/°C}$; $a_3 = -7.5 \times 10^{-7} \,\mu\text{V/°C}$

Accepted Answers:

1) $a_1 = -0.245 \,\mu\text{V/°C}; \, a_2 = +0.005825 \,\mu\text{V/°C}; \, a_3 = -7.5 \times 10^{-7} \,\mu\text{V/°C}$

2 points $x = x + 4x^2$ Find its maximum static sensitivity

A sensor has an input – output relationship as $y = 4x^2$. Find its maximum static sensitivity in the range $0 \le x \le 100$.

- 1) 400 unit
- 2) 600 unit
- 3) 800 unit
- 4) None of these

Accepted Answers:

3) 800 unit

5) 2 points

Calculate the percentage error in measurement of I, when I is measured by inserting an ammeter of internal resistance $R_m = 1 \Omega$ suitably.

(Ignore the sign of error)

- 1) 0.5 %
- 2) 5 %
- 3) 1 %
- 4) 1.5 %

Accepted Answers:

1) 0.5 %

6) 2 point

A first order instrument measures sinusoidal signals with frequency content up to 200 Hz with a dynamic error of 2 %. What is the allowable time-constant?

- 1) 0.162 second
- 2) 0.162 millisecond
- 3) 1.62 millisecond
- 4) 16.2 millisecond

Accepted Answers: 2) 0.162 millisecond	
7) 2 point	nte
A first order temperature furnace is heating at the rate of 50°C/min. The time-cons	
	cam
of the system is 15 second. Find out,	
(i) Steady-state error in the system.	
(ii) Steady-state time lag of the system.	
(Ignore the sign of error)	
○ 1) (i) 12.5 °C; (ii) 0	
2) (i) 12.5 °C; (ii) 15 second	
○ 3) (i) 7.5 °C; (ii) 15 second ○ 4) (i) 7.5 °C; (ii) 0	
4) (i) 7.3 °C, (ii) 0	
Accepted Answers: 2) (i) 12.5 °C; (ii) 15 second	
8) 2 poin	nts
A first-order pressure sensor is suddenly subjected to 10 Pascal pressure. The ser	
shows 6 Pascal after 2 second. Calculate the error after 3 second in sensor reading.	
(Ignore the sign of error)	
1) 25.3 %	
② 2) 23.5 % ③ 3) 26.5 %	
(a) 21.3 %	
4)21.0 /0	
Accepted Answers:	
Accepted Answers: 1) 25.3 %	
9) 1 poi	int
A first-order system is subjected to a unit step-change in input. The time-constant of	fthe
instrument is 1 second. Find out the time-instant when error is maximum.	
1) Insufficient data	
2) at 1 second	
3) at 0.707 second	
4) None of these	
Accepted Answers: 4) None of these	
10) 1 poi	int
A sinusoidal signal is measured with a first-order instrument having time-constant	
ms. Find, the highest frequency of input signal that can be measured, if maxin	
tolerable dynamic error is ±2%.	
1) 40.6 Hz	
2) 6.46 Hz	
3) 10.64 Hz	
4) 45.64 Hz	
Accepted Answers: 2) 6.46 Hz	
=/	

An accelerometer that is 2nd order in nature is to be selected to measure sinusoidal signal of frequency below 200 Hz. If dynamic error of ±6% is allowed, find the natural frequency (ω_n) of the sensor for damping ratio 0.7.

1) 12752 rad/sec
2) 1275.2 rad/sec
3) 2029.5 rad/sec
4) 1014.7 rad/sec

Accepted Answers:
3) 2029.5 rad/sec

Previous Page

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

NATIONAL Programme on Technology Enhanced Learning

In association with

Funded by

Government of India Ministry of Human Resource Development Powered by

